organic compounds

 $\mu = 0.47 \text{ mm}^{-1}$

 $0.48 \times 0.34 \times 0.14 \text{ mm}$

Diffraction, 2009)

5852 measured reflections

2752 independent reflections

1701 reflections with $I > 2\sigma(I)$

 $T_{\min} = 0.807, T_{\max} = 0.937$

T = 293 K

 $R_{\rm int} = 0.021$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N-(2,6-Dichlorophenyl)-4-methylbenzamide

Vinola Z. Rodrigues,^a Sabine Foro^b and B. Thimme Gowda^a*

^aDepartment of Chemistry, Mangalore University, Mangalagangotri 574199, Mangalore, India, and ^bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287, Darmstadt, Germany Correspondence e-mail: gowdabt@yahoo.com

Received 16 July 2011; accepted 18 July 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.042; wR factor = 0.120; data-to-parameter ratio = 16.6.

In the title compound, $C_{14}H_{11}Cl_2NO$, the two aromatic rings are nearly orthogonal to each other [dihedral angle 79.7 $(1)^{\circ}$], while the central amide core -NH-C(=O)- is nearly coplanar with the benzoyl ring [N-C-C-C torsion angles = -5.5 (3)]and 1772. (2)°]. In the crystal, intermolecular $N-H\cdots O$ hydrogen bonds link the molecules into C(4) chains propagating in [001].

Related literature

For our studies on the effects of substituents on the structures of N-(aryl)-amides, see: Bhat & Gowda (2000); Gowda et al. (2006, 2009), on N-(aryl)-methanesulfonamides, see: Javalakshmi & Gowda (2004) and on N-(aryl)-arylsulfonamides, see: Gowda et al. (2005).

Experimental

Crystal data C14H11Cl2NO $M_r = 280.14$

Tetragonal, $I4_1/a$ a = 16.4706 (8) Å c = 19.8709 (9) Å V = 5390.6 (4) Å³ Z = 16Mo $K\alpha$ radiation

Data collection

Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector Absorption correction: multi-scan (CrysAlis RED; Oxford

Refinement

 $\begin{array}{l} R[F^2 > 2\sigma(F^2)] = 0.042 \\ wR(F^2) = 0.120 \end{array}$ S = 1.012752 reflections 166 parameters 1 restraint

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{\rm max} = 0.23 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1N \cdots O1^i$	0.82 (2)	2.08 (2)	2.878 (2)	164 (2)
Symmetry code: (i) -	$y + \frac{3}{4}, x + \frac{1}{4}, z + \frac{1}{4}$	<u>1</u> .		

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

VZR thanks the University Grants Commission, Government of India, New Delhi, for award of an RFSMS research fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT6816).

References

- Bhat, D. K. & Gowda, B. T. (2000). J. Indian Chem. Soc. 77, 279-284.
- Gowda, B. T., Kožíšek, J. & Fuess, H. (2006). Z. Naturforsch. Teil A, 61, 588-594
- Gowda, B. T., Shetty, M. & Jayalakshmi, K. L. (2005). Z. Naturforsch. Teil A, 60. 106-112.
- Gowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2009). Acta Cryst. E65, 01612
- Jayalakshmi, K. L. & Gowda, B. T. (2004). Z. Naturforsch. Teil A, 55, 491-500. Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supplementary materials

Acta Cryst. (2011). E67, o2123 [doi:10.1107/S1600536811028935]

N-(2,6-Dichlorophenyl)-4-methylbenzamide

V. Z. Rodrigues, S. Foro and B. T. Gowda

Comment

The amide moiety is an important constituent of many biologically significant compounds. As part of our studies on the effects of ring and side chain substitutions on the structures of *N*-(aryl)-amides (Bhat & Gowda, 2000; Gowda *et al.*, 2006, 2009), *N*-(aryl)-methanesulfonamides (Jayalakshmi & Gowda, 2004) and *N*-(aryl)-arylsulfonamides (Gowda *et al.*, 2005), the crystal structure of *N*-(2,6-dichlorophenyl)-4-methylbenzamide (I) has been determined (Fig. 1). The conformations of the N—H and C=O bonds in the amide segment of the structure are *anti* to each other, similar to that observed in *N*-(2,6-di-methylbenzamide (II) (Gowda *et al.*, 2009) and other benzanilides, with similar bond parameters.

The two aromatic rings in the structure make the dihedral angle of 79.7 (1)°, compared to the value of 78.8 (1)° in (II). The central amide core -NH—C(=O)— is nearly coplanar with the benzoyl ring. The orientation of the anilino ring with respect to the amide core are given by the torsion angles, C2—C1—N1—C7 = 105.8 (3)° and C6—C1—N1—C7 = -74.5 (3)°.

Part of the crystal structure of (I), showing the formation of hydrogen- bonded layered chains (Table 1) running along b axis is shown in Fig.2.

Experimental

The title compound was prepared by the method described by Gowda *et al.* (2009). The purity of the compound was checked and characterized by recording its infrared and NMR spectra.

Needle-like colourless single crystals of the title compound were obtained by slow evaporation from an ethanol solution of the compound (0.5 g in about 30 ml of ethanol) at room temperature.

Refinement

The H atom of the NH group was located in a difference map and later restrained to N—H = 0.86 (2) %A. The other H atoms were positioned with idealized geometry using a riding with the aromatic C—H = 0.93Å and the methyl C—H = 0.96 Å. All H atoms were refined with isotropic displacement parameters set to 1.2 times of the U_{eq} of the parent atom.

Figures

Fig. 1. Molecular structure of (I) showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented as small spheres of arbitrary radii.

Fig. 2. Molecular packing of the title compound with hydrogen bonding shown as dashed lines.

N-(2,6-Dichlorophenyl)-4-methylbenzamide

C ₁₄ H ₁₁ Cl ₂ NO	$D_{\rm x} = 1.381 {\rm ~Mg~m^{-3}}$
$M_r = 280.14$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Tetragonal, $I4_1/a$	Cell parameters from 1773 reflections
Hall symbol: -I 4ad	$\theta = 2.8 - 27.9^{\circ}$
a = 16.4706 (8) Å	$\mu = 0.47 \text{ mm}^{-1}$
c = 19.8709 (9) Å	T = 293 K
$V = 5390.6 (4) \text{ Å}^3$	Prism, colourless
<i>Z</i> = 16	$0.48 \times 0.34 \times 0.14 \text{ mm}$
F(000) = 2304	

Data collection

Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector	2752 independent reflections
Radiation source: fine-focus sealed tube	1701 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.021$
Rotation method data acquisition using ω scans.	$\theta_{\text{max}} = 26.4^{\circ}, \ \theta_{\text{min}} = 3.0^{\circ}$
Absorption correction: multi-scan (<i>CrysAlis RED</i> ; Oxford Diffraction, 2009)	$h = -12 \rightarrow 17$
$T_{\min} = 0.807, T_{\max} = 0.937$	$k = -17 \rightarrow 20$
5852 measured reflections	$l = -10 \rightarrow 24$

Refinement

Rejinemeni	
Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.042$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.120$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.01	$w = 1/[\sigma^2(F_o^2) + (0.0618P)^2 + 1.1095P]$ where $P = (F_o^2 + 2F_c^2)/3$
2752 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
166 parameters	$\Delta \rho_{\text{max}} = 0.23 \text{ e} \text{ Å}^{-3}$
1 restraint	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.14058 (13)	0.52556 (15)	0.06376 (10)	0.0437 (5)
C2	0.07328 (15)	0.48135 (16)	0.08354 (12)	0.0542 (6)
C3	-0.00303 (16)	0.51539 (19)	0.08617 (14)	0.0686 (8)
Н3	-0.0474	0.4849	0.1002	0.082*
C4	-0.01236 (17)	0.5952 (2)	0.06771 (14)	0.0707 (8)
H4	-0.0638	0.6186	0.0686	0.085*
C5	0.05259 (16)	0.64076 (17)	0.04806 (14)	0.0630(7)
Н5	0.0455	0.6947	0.0356	0.076*
C6	0.12874 (14)	0.60634 (16)	0.04678 (11)	0.0505 (6)
C7	0.25465 (13)	0.47064 (13)	0.00212 (10)	0.0397 (5)
C8	0.33829 (13)	0.43726 (13)	0.00489 (9)	0.0388 (5)
С9	0.37543 (16)	0.4135 (2)	-0.05361 (12)	0.0726 (9)
Н9	0.3472	0.4172	-0.0940	0.087*
C10	0.45324 (17)	0.3845 (2)	-0.05353 (13)	0.0792 (9)
H10	0.4766	0.3692	-0.0942	0.095*
C11	0.49760 (14)	0.37724 (14)	0.00367 (12)	0.0497 (6)
C12	0.46104 (15)	0.40214 (18)	0.06207 (12)	0.0655 (8)
H12	0.4899	0.3992	0.1022	0.079*
C13	0.38295 (15)	0.43136 (17)	0.06293 (11)	0.0600(7)
H13	0.3600	0.4474	0.1036	0.072*
C14	0.58324 (16)	0.34561 (19)	0.00401 (16)	0.0713 (8)
H14A	0.6167	0.3796	-0.0238	0.086*
H14B	0.5839	0.2912	-0.0132	0.086*
H14C	0.6038	0.3459	0.0492	0.086*
N1	0.21884 (11)	0.49001 (12)	0.06109 (8)	0.0462 (5)
H1N	0.2409 (14)	0.4795 (15)	0.0972 (9)	0.055*
01	0.21852 (10)	0.48106 (11)	-0.05131 (7)	0.0548 (5)
C11	0.08438 (5)	0.37957 (5)	0.10321 (4)	0.0777 (3)
C12	0.21062 (4)	0.66582 (4)	0.02405 (4)	0.0717 (3)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0379 (13)	0.0624 (16)	0.0309 (11)	0.0084 (11)	-0.0007 (9)	-0.0048 (10)
C2	0.0483 (15)	0.0640 (16)	0.0502 (14)	0.0043 (12)	-0.0027 (11)	0.0034 (11)
C3	0.0425 (15)	0.082 (2)	0.0817 (19)	0.0023 (14)	0.0067 (13)	0.0058 (15)
C4	0.0432 (16)	0.086 (2)	0.083 (2)	0.0163 (15)	0.0036 (14)	-0.0081 (16)
C5	0.0530 (16)	0.0590 (17)	0.0770 (18)	0.0150 (13)	-0.0009 (13)	-0.0057 (14)
C6	0.0438 (14)	0.0612 (16)	0.0465 (13)	0.0046 (11)	0.0013 (10)	-0.0056 (11)
C7	0.0430 (12)	0.0448 (13)	0.0315 (11)	0.0010 (10)	-0.0003 (9)	-0.0002 (9)
C8	0.0400 (12)	0.0426 (12)	0.0337 (11)	-0.0009 (10)	0.0014 (9)	-0.0010 (9)
С9	0.0600 (18)	0.120 (3)	0.0375 (13)	0.0260 (16)	-0.0047 (12)	-0.0161 (14)
C10	0.0616 (19)	0.127 (3)	0.0485 (15)	0.0296 (18)	0.0082 (14)	-0.0186 (16)
C11	0.0414 (13)	0.0509 (14)	0.0566 (14)	0.0011 (11)	0.0053 (11)	-0.0013 (11)
C12	0.0492 (16)	0.101 (2)	0.0461 (14)	0.0154 (14)	-0.0064 (12)	0.0001 (14)
C13	0.0492 (15)	0.095 (2)	0.0355 (13)	0.0157 (14)	0.0000 (11)	-0.0048 (12)
C14	0.0482 (16)	0.081 (2)	0.0845 (19)	0.0108 (14)	0.0077 (14)	-0.0042 (16)
N1	0.0414 (11)	0.0676 (14)	0.0297 (10)	0.0122 (9)	-0.0026 (8)	-0.0012 (9)
01	0.0541 (10)	0.0812 (12)	0.0291 (8)	0.0129 (8)	-0.0065 (7)	-0.0015 (7)
Cl1	0.0697 (5)	0.0710 (5)	0.0924 (5)	0.0008 (4)	-0.0054 (4)	0.0200 (4)
Cl2	0.0594 (5)	0.0703 (5)	0.0853 (5)	-0.0040 (3)	0.0068 (3)	0.0012 (4)

Geometric parameters (Å, °)

C1—C2	1.383 (3)	C8—C9	1.371 (3)
C1—C6	1.386 (3)	C8—C13	1.371 (3)
C1—N1	1.417 (3)	C9—C10	1.368 (4)
C2—C3	1.377 (3)	С9—Н9	0.9300
C2—Cl1	1.731 (3)	C10-C11	1.357 (3)
C3—C4	1.374 (4)	C10—H10	0.9300
С3—Н3	0.9300	C11—C12	1.370 (3)
C4—C5	1.364 (4)	C11—C14	1.504 (3)
C4—H4	0.9300	C12—C13	1.373 (3)
C5—C6	1.377 (3)	C12—H12	0.9300
С5—Н5	0.9300	С13—Н13	0.9300
C6—Cl2	1.727 (2)	C14—H14A	0.9600
C7—O1	1.229 (2)	C14—H14B	0.9600
C7—N1	1.350 (3)	C14—H14C	0.9600
С7—С8	1.484 (3)	N1—H1N	0.823 (16)
C2—C1—C6	117.5 (2)	C10—C9—C8	121.1 (2)
C2—C1—N1	121.5 (2)	С10—С9—Н9	119.4
C6—C1—N1	121.0 (2)	С8—С9—Н9	119.4
C3—C2—C1	121.9 (3)	C11—C10—C9	122.4 (2)
C3—C2—Cl1	118.8 (2)	C11-C10-H10	118.8
C1—C2—Cl1	119.30 (19)	С9—С10—Н10	118.8
C4—C3—C2	118.8 (3)	C10-C11-C12	116.5 (2)
С4—С3—Н3	120.6	C10-C11-C14	122.7 (2)

С2—С3—Н3	120.6		C12—C11—C14		120.8 (2)
C5—C4—C3	121.0 (3)		C11—C12—C13		121.8 (2)
С5—С4—Н4	119.5		С11—С12—Н12		119.1
С3—С4—Н4	119.5		C13—C12—H12		119.1
C4—C5—C6	119.6 (3)		C8—C13—C12		121.1 (2)
С4—С5—Н5	120.2		C8—C13—H13		119.4
С6—С5—Н5	120.2		С12—С13—Н13		119.4
C5—C6—C1	121.3 (2)		C11—C14—H14A		109.5
C5—C6—Cl2	118.9 (2)		C11—C14—H14B		109.5
C1—C6—Cl2	119.88 (17)		H14A—C14—H14B		109.5
O1—C7—N1	120.3 (2)		C11—C14—H14C		109.5
O1—C7—C8	122.21 (18)		H14A—C14—H14C		109.5
N1—C7—C8	117.44 (17)		H14B—C14—H14C		109.5
C9—C8—C13	117.0 (2)		C7—N1—C1		121.85 (17)
C9—C8—C7	119.24 (19)		C7—N1—H1N		120.9 (17)
C13—C8—C7	123.73 (19)		C1—N1—H1N		117.2 (17)
C6—C1—C2—C3	0.3 (4)		O1—C7—C8—C13		174.2 (2)
N1—C1—C2—C3	-179.9 (2)		N1—C7—C8—C13		-5.5 (3)
C6—C1—C2—Cl1	178.38 (16)		C13—C8—C9—C10		0.7 (4)
N1—C1—C2—Cl1	-1.8 (3)		C7—C8—C9—C10		178.2 (3)
C1—C2—C3—C4	0.9 (4)		C8—C9—C10—C11		0.3 (5)
Cl1—C2—C3—C4	-177.2 (2)		C9-C10-C11-C12		-1.3 (5)
C2—C3—C4—C5	-1.0 (4)		C9—C10—C11—C14		-179.8 (3)
C3—C4—C5—C6	-0.1 (4)		C10-C11-C12-C13		1.3 (4)
C4—C5—C6—C1	1.4 (4)		C14—C11—C12—C13		179.9 (3)
C4—C5—C6—Cl2	-178.2 (2)		C9—C8—C13—C12		-0.6 (4)
C2—C1—C6—C5	-1.5 (3)		C7—C8—C13—C12		-178.0 (2)
N1—C1—C6—C5	178.7 (2)		C11—C12—C13—C8		-0.4 (4)
C2-C1-C6-Cl2	178.09 (17)		01—C7—N1—C1		-2.5 (3)
N1—C1—C6—Cl2	-1.7 (3)		C8—C7—N1—C1		177.2 (2)
O1—C7—C8—C9	-3.2 (4)		C2-C1-N1-C7		105.8 (3)
N1—C7—C8—C9	177.2 (2)		C6—C1—N1—C7		-74.5 (3)
Hydrogen-bond geometry (Å, °)					
D—H…A		<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N1—H1N···O1 ⁱ		0.82 (2)	2.08 (2)	2.878 (2)	164 (2)

Symmetry codes: (i) -y+3/4, x+1/4, z+1/4.

Fig. 1

Fig. 2